Descending control of itch transmission by the serotonergic system via 5-HT1A-facilitated GRP-GRPR signaling.

نویسندگان

  • Zhong-Qiu Zhao
  • Xian-Yu Liu
  • Joseph Jeffry
  • W K Ajith Karunarathne
  • Jin-Lian Li
  • Admire Munanairi
  • Xuan-Yi Zhou
  • Hui Li
  • Yan-Gang Sun
  • Li Wan
  • Zhen-Yu Wu
  • Seungil Kim
  • Fu-Quan Huo
  • Ping Mo
  • Devin M Barry
  • Chun-Kui Zhang
  • Ji-Young Kim
  • N Gautam
  • Kenneth J Renner
  • Yun-Qing Li
  • Zhou-Feng Chen
چکیده

UNLABELLED Central serotonin (5-hydroxytryptophan, 5-HT) modulates somatosensory transduction, but how it achieves sensory modality-specific modulation remains unclear. Here we report that enhancing serotonergic tone via administration of 5-HT potentiates itch sensation, whereas mice lacking 5-HT or serotonergic neurons in the brainstem exhibit markedly reduced scratching behavior. Through pharmacological and behavioral screening, we identified 5-HT1A as a key receptor in facilitating gastrin-releasing peptide (GRP)-dependent scratching behavior. Coactivation of 5-HT1A and GRP receptors (GRPR) greatly potentiates subthreshold, GRP-induced Ca(2+) transients, and action potential firing of GRPR(+) neurons. Immunostaining, biochemical, and biophysical studies suggest that 5-HT1A and GRPR may function as receptor heteromeric complexes. Furthermore, 5-HT1A blockade significantly attenuates, whereas its activation contributes to, long-lasting itch transmission. Thus, our studies demonstrate that the descending 5-HT system facilitates GRP-GRPR signaling via 5-HT1A to augment itch-specific outputs, and a disruption of crosstalk between 5-HT1A and GRPR may be a useful antipruritic strategy. VIDEO ABSTRACT

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

B-type natriuretic peptide is neither itch-specific nor functions upstream of the GRP-GRPR signaling pathway

BACKGROUND A recent study by Mishra and Hoon identified B-type natriuretic peptide (BNP) as an important peptide for itch transmission and proposed that BNP activates spinal natriuretic peptide receptor-A (NPRA) expressing neurons, which release gastrin releasing peptide (GRP) to activate GRP receptor (GRPR) expressing neurons to relay itch information from the periphery to the brain (Science 3...

متن کامل

The Gastrin-Releasing Peptide Receptor (GRPR) in the Spinal Cord as a Novel Pharmacological Target

Gastrin-releasing peptide (GRP) is a mammalian neuropeptide that acts through the G protein-coupled receptor, GRP receptor (GRPR). Increasing evidence indicates that GRPR-mediated signaling in the central nervous system plays an important role in many physiological processes in mammals. Additionally, we have recently reported that the GRP system within the lumbosacral spinal cord not only contr...

متن کامل

Cross-inhibition of NMBR and GRPR signaling maintains normal histaminergic itch transmission.

We previously showed that gastrin-releasing peptide receptor (GRPR) in the spinal cord is important for mediating nonhistaminergic itch. Neuromedin B receptor (NMBR), the second member of the mammalian bombesin receptor family, is expressed in a largely nonoverlapping pattern with GRPR in the superficial spinal cord, and its role in itch transmission remains unclear. Here, we report that Nmbr k...

متن کامل

Unidirectional Cross-Activation of GRPR by MOR1D Uncouples Itch and Analgesia Induced by Opioids

Spinal opioid-induced itch, a prevalent side effect of pain management, has been proposed to result from pain inhibition. We now report that the μ-opioid receptor (MOR) isoform MOR1D is essential for morphine-induced scratching (MIS), whereas the isoform MOR1 is required only for morphine-induced analgesia (MIA). MOR1D heterodimerizes with gastrin-releasing peptide receptor (GRPR) in the spinal...

متن کامل

Spinal Functions of B-Type Natriuretic Peptide, Gastrin-Releasing Peptide, and Their Cognate Receptors for Regulating Itch in Mice.

B-type natriuretic peptide (BNP)-natriuretic peptide receptor A (NPRA) and gastrin-releasing peptide (GRP)-GRP receptor (GRPR) systems contribute to spinal processing of itch. However, pharmacological and anatomic evidence of these two spinal ligand-receptor systems are still not clear. The aim of this study was to determine the spinal functions of BNP-NPRA and GRP-GRPR systems for regulating s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 84 4  شماره 

صفحات  -

تاریخ انتشار 2014